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Abstract

The validity of the local thermal equilibrium assumption in natural convection over a vertical flat plate embedded in

porous medium is investigated analytically. The study is based on the two-phase (Schumann) model, using the

Brinkman term (no-slip condition) to cover the flow. It is found that there are four dimensionless parameters con-

trolling the local thermal equilibrium assumption: the volumetric Biot number (Biv), the modified Rayleigh number

(Ram), the modified Darcy number (Da) and the ratio of effective to dynamic viscosity (k). The effects of these

parameters are investigated and a correlation equation is developed in order to determine the region where the local

thermal equilibrium assumption is valid.
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1. Introduction

In recent years, the convection heat transfer over a

vertical flat plate embedded in porous medium has be-

come of great interest and development. This is due to its

wide-spread applications, e.g. porous-flat plates collec-

tors, geothermal energy utilization, insulation of nuclear

reactors, food storage, filtering, enhanced recovery of

petroleum resources, and many other applications [1,2].

During the last few decades, convection heat transfer

in porous media has been extensively investigated. Two

models are adopted to describe the thermal behavior of

porous systems. These are the so-called single-phase and

the two-phase (Schumann) models. The main distinction

between these two models is that local thermal equili-

brium is assumed in the single-phase model while no such

assumption is made in the two-phase model. Therefore,
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the single-phase model yields only one energy equation,

whereas in the two-phase model there are two energy

equations. In the two-phase model, each energy equation

contains a fluid to solid heat transfer term. The concept

of local thermal equilibrium has been widely used in

modeling transport phenomena in porous media [3–5].

Many investigations in the literature have released the

local thermal equilibrium assumption [2,6]. Compara-

tively, fewer investigations have compared results by the

two models [7,8]. Also, there are mainly two models used

in the literature to describe the fluid flow in porous

medium: one of them is the non-Darcian model [3,4].

The forced convection heat transfer problem in por-

ous medium has been investigated by Al-Nimr and

Kiwan [9]. The validity of the local thermal equilibrium

assumption in transient conjugated forced convection

channel flow has been investigated analytically by Al-

Nimr and Abu-Hijleh [10]. The study was focused on the

time required for both the solid and fluid to attain

approximately the same temperature, and consequently

the local thermal equilibrium assumption can be insured.
ed.
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Nomenclature

Da Darcy number ¼ hvK
ekf

� �
f similarity stream function

g gravitational acceleration

h convection heat transfer coefficient

K permeability

k thermal conductivity

Bi Biot number ¼ hvK
ð1�eÞks

� �

Ra Rayleigh number ¼ gbDTK3=2

2af etf

� �
T temperature

u; v volume-averaged velocity in the (x; y) direc-

tion, respectively u ¼ �uu
uo
; v ¼ �vv

uo

� �

x; y Cartesian coordinate x ¼ �xx
xo
; y ¼ �yy

xo

� �

Greek symbols

a thermal diffusivity

b thermal expansion coefficient

� porosity

g similarity variable ¼ yffiffi
x

p
� �

H similarity non-dimensional temperature

(¼ h)

h non-dimensional temperature ¼ T�T1
Tw�T1

� �
k ratio of effective viscosity to dynamic vis-

cosity ¼ ~ll
l

� �
l dynamic viscosity

~ll effective viscosity (Brinkman)

t kinematic viscosity

W stream function (¼ ffiffiffi
x

p
f ðgÞ)

Subscripts

f fluid

m modified

o reference

s solid

v volumetric

w wall (plate)

1 free-stream condition

Superscripts
0 differentiation with respect to (g)
- dimensional quantity
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On the other hand, the problem of free convection from

vertical flat plate in porous medium has been investigated

by many researchers [1,4–6]. In particular, the problem

of free convection from vertical plate in porous medium

using Darcy model is investigated numerically by Mo-

hamad [6] using the two-phase approach. It was found

that the porosity of the medium influences the tempera-

ture difference between the solid and fluid within the

system. Rees and Pop [2] used a different approach to

investigate the same convective boundary layer flow of

Mohamad [6]. They used asymptotic analysis to investi-

gate the regions away from leading edge, and to

emphasize that at increasing distances from the leading

edge the difference between the temperatures of the fluid

and solid phases decreases to 0. Under the local thermal

equilibrium assumption, the analytical (asymptotic

analysis) and the numerical solutions were in agreement

for two different kinds of thermal boundary conditions:

(1) isothermal wall case and (2) isoflux wall case. This

was previously confirmed by Kim and Vafai [5].

It is necessary to identify regions within which the

local thermal equilibrium assumption is valid. Al-Nimr

and Abu-Hijleh [10] have studied this for the case of

transient forced convection from porous channel flow.

However, to the best of the authors’ knowledge, the case

of natural convection from a vertical flat plate embed-

ded in porous medium is not considered in the literature

yet. This flow problem is the focus of this paper.
The aim of this study is to investigate the validity of

the local thermal equilibrium assumption in the case of

free convection flow over an isothermal flat plate

embedded in a porous medium. This is accomplished by

comparing the results obtained from the single-phase

and the two-phase (Schumann) models at different

modified Darcy number, volumetric Biot number,

modified Rayleigh number, and the ratio of effective to

dynamic viscosity. The flow is modeled using Brinkman-

extended Darcy model. Regions where the local thermal

equilibrium assumption is valid will be identified. The

results of this mapping process will be presented in a

map form. In addition, these maps will then be repre-

sented in a correlation equations form.
2. Mathematical formulation

A two-dimensional, steady, laminar, buoyant flow

over a vertical flat plate embedded in a saturated

homogenous porous medium is considered. The fluid is

considered incompressible and Newtonian with constant

physical properties except the density in the buoyancy

term (Boussinesq approximation). In addition, the fluid

is modeled by the Brinkman-extended Darcy model.

The origin of the x–y Cartesian coordinate is attached

at the leading edge of the vertical plate with the x-axis
along the upward flat plate direction and the y-axis is in
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the transverse direction. Now, defining the stream

function W such that �uu ¼ oW=o�yy and �vv ¼ �oW=o�xx, the
governing equations in dimensionless form are given as:

Momentum equation

k
o4W
oy4

¼ o2W
oy2

� ohf
oy

ð1Þ

Energy equation-solid phase

o2hs
oy2

¼ Bivðhs � hfÞ ð2aÞ

Energy equation-fluid phase

o2hf
oy2

¼ Daðhf � hsÞ þ 2Ram
oW
oy

ohf
ox

�
� oW

ox
ohf
oy

�
ð2bÞ

where x ¼ �xx=xo, y ¼ �yy=xo, u ¼ �uu=uo, v ¼ �vv=uo, h ¼ ðT�
T1Þ=ðTw � T1Þ, DT ¼ ðTw � T1Þ, xo ¼

ffiffiffiffi
K

p
, k ¼ ~ll=l,

uo ¼ gbKDT=tf , Ram ¼ gbDTK3=2=2afetf , Biv ¼ hvK=
ð1� eÞks, Da ¼ hvK=ekf .

Also, the dimensionless forms of the boundary con-

ditions are given as:

at y ¼ 0 : u; v ¼ 0; hf ¼ hs ¼ 1;

at y ! 1 : u ¼ ou
oy

¼ 0; hf ¼ hs ¼ 0 ð3Þ

The resulting governing non-dimensional equations

given above are transformed into local similarity equa-

tions by introducing the following variables:

g ¼ yffiffiffi
x

p ; WðgÞ ¼
ffiffiffi
x

p
f ðgÞ; hs ¼ HsðgÞ;

hf ¼ HfðgÞ ð4Þ

Substituting these back into Eqs. (1) and (2) produces

the following locally similar equations:

kf IV ¼ xðf 00 �H0
fÞ ð5aÞ

H0
s ¼ xBivðHs �HfÞ ð5bÞ

H00
f ¼ xDaðHf �HsÞ � RamfH

0
f ð5cÞ

Similarly, upon using the definitions introduced in Eq.

(4), the boundary conditions given by Eq. (3) become:

@g ¼ 0 : f ¼ f 0 ¼ 0; Hs ¼ Hf ¼ 1;

@g ! 1 : f 0 ¼ f 00 ¼ 0; Hs ¼ Hf ¼ 0 ð6Þ
3. Solution methodology

The governing system of ordinary differential equa-

tions (5) subjected to the boundary conditions in Eq. (6)

forms a boundary value problem, which can be solved

by many well-established numerical techniques. In this
study, the finite difference method with non-uniform

grid is used to solve this system of equations. A FOR-

TRAN computer program is developed for this purpose

which makes use of BVPFD-subroutine. BVPFD is a

general purpose subroutine in the IMSL library which

is designed to solve boundary value problem governed

by a system of ordinary differential equations using the

finite difference method.

At first, the solution domain has to be identified, and

the domain of integration in the wall normal g-direction
has to be finite. It was founded that the infinity is located

beyond 4.5. Thus, the boundary location is considered

at g ¼ 5 for the rest of this study.

In the present work, the local thermal equilibrium

assumption is assumed to be valid when the absolute

difference in temperature between the solid and fluid

phases ðTf � TsÞ is less than or equal to 1% of Tw � T1,
i.e. when

jhs � hf j6 0:01

At each x-location along the plate, there will be a cor-

responding g that divides the domain into local and non-

local thermal equilibrium domains. When these border

points are connected along the plate, regions of local

and non-local thermal equilibrium can be easily identi-

fied. This procedure was repeated for a wide range of

flow parameters Biv, Ram, Da, and k. As a result, the

aspects of the effect of each parameter are revealed.

In an attempt to make reading of the results easier,

the obtained results are fitted numerically by using the

least squares method. The resulting correlations could

be used to check the validity of using or not using the

local thermal equilibrium assumption.
4. Results and discussion

The effect of modified Darcy number, volumetric

Biot number, modified Rayleigh number and the ratio of

effective to dynamic viscosity is investigated, and the

results are shown in Figs. 1–4. Figs. 1–4 represent a

mapping for the region within which the local thermal

equilibrium assumption is unjustified. In these regions,

the difference between the solid and fluid temperatures is

relatively significant (i.e. jhs � hf j > 0:01), so that the

two-phase (Schumann) model is reasonable to be used.

It can be noted that the maps (curves) shown in Figs. 1–

4 can be divided into three-distinct regions––(1) region

1: in this region, x is always greater than xplateau, where
xplateau is the x-value of the plateau part of the curve. In

this region, the local thermal equilibrium assumption is

acceptable for the entire range in the transverse direction

y. (2) Region 2: in this region x is less than xplateau, and
the product of g

ffiffiffi
x

p
is greater than the corresponding

value on the curve. In this region, the temperature
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Fig. 1. Effect of modified Darcy number on the validity of the

local thermal equilibrium model (Ram ¼ 100, k ¼ 1:0, and

Biv ¼ 1:0).
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Fig. 2. Effect of volumetric Biot number on the validity of the

local thermal equilibrium model (Ram ¼ 100, k ¼ 1:0, and

Da ¼ 0:1).
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Fig. 3. Effect of modified Rayleigh number on the validity of

the local thermal equilibrium model (Da ¼ 0:1, k ¼ 1:0, and

Biv ¼ 1:0).
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Fig. 4. Effect of effective viscosity to dynamic viscosity ratio on

the validity of the local thermal equilibrium model (Ram ¼ 100,

Da ¼ 0:1, and Biv ¼ 10).
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difference between the solid and fluid phases is signifi-

cant, and hence the two-phase (Schumann) model must

be used. (3) Region 3: in this region x is less than xplateau,
and the product of g

ffiffiffi
x

p
is less than the corresponding

value on the curve. In this region, the local thermal

equilibrium assumption is valid as in region 1.

The effect of Da on the region within which the local

thermal equilibrium assumption is valid is shown in Fig.
1, for the range (1.0e)8 6 Da 6 1). Obviously, as Da
increases, region 1 within which the local thermal equi-

librium assumption is valid increases. Also, the range in

the wall normal direction within which the local thermal

equilibrium assumption is valid (i.e. region 3) increases.

This can be attributed to the fact that as Da increases,

the porous medium becomes lighter and thus the
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volumetric surface area increases. As a result, the con-

vection heat transfer between the solid and fluid phases

increases. This in turn enforces the local thermal equi-

librium assumption. In addition, increasing Da will ease

the motion of the fluid within the pores due to the in-

crease in the permeability of the porous medium K. As a

result, the heat transfer between the fluid and solid

phases will be enhanced, and this enforces the local

equilibrium assumption too.

Similarly, the Biv effect on the local thermal equilib-

rium assumption is investigated. The result is shown in

Fig. 2, for the range 0:16Biv 6 10. It is clear that as Biv
increases, region 1 within which the local thermal equi-

librium assumption is valid increases. Also, the range in

the wall normal direction within which the local thermal

equilibrium assumption is valid (i.e. region 3) increases.

To explain this we recall that Biv is proportional to the

permeability K of the porous medium and to the volu-

metric convection heat transfer coefficient between the

fluid and solid matrix hv. By increasing the permeability

of the medium, the flow of the fluid within the medium

becomes easier. This leads to enhanced heat transfer

between the solid and fluid and thus enforces the local

thermal equilibrium assumption. In the meantime,

increasing hv will increase the heat transfer between the

solid and fluid phases, and this enforces the local equi-

librium assumption too.

Fig. 3 shows the effect of Ram on the regions within

which the two-phase (Schumann) model is significant for

the wide range of 106Ram 6 1000. It can be noted that as

Ram increases, region 1 within which the local thermal

equilibrium assumption is valid decreases. Also, the

range in the wall normal direction within which the local

thermal equilibrium assumption is valid (i.e. region 3)

decreases. The buoyancy force may be decreased by

decreasing the temperature difference between the wall

and free-stream. This leads to a reduction in the traveling

distance required by the flow along the plate to attain the

local equilibrium all over the domain in the transverse

direction. This enforces the local thermal equilibrium

assumption. On the other hand, increasing the fluid’s

thermal diffusivity will increase heat conduction in the

wall normal direction. This enhances the heat transfer

between the fluid and solid matrix, and thus enforces the

local equilibrium assumption. It is worth mentioning

here that at large value of Ram (P 1000), the effect of the

inertial force may be significant. As a result, one should

be careful in using the Ram map within high ranges. At

large values of Ram, the microscopic Forcheimer inertial

term must be included in the momentum equation.

Lastly, the effect of k ð~ll=lÞ on the region within

which the local equilibrium assumption is valid is shown

in Fig. 4, for the range 0:16 k6 10. Fig. 4 displays that

as the effective viscosity (relatively to the dynamic vis-

cosity) increases, the regions within which the local

equilibrium assumption is valid (regions 1 and 3) in-
crease. This helps the fluid in attaining thermal equi-

librium faster. For an isotropic porous medium, k is

proportional to 1=eT �, where T � represents the tortuos-

ity of the porous medium. Many investigations assume

that T � ¼ 1, and thus k ¼ 1=e. Hence, k depends on the

geometry and on the porosity of the medium [1, p. 13].

Thus decreasing the medium porosity will increase the

convection contact area, leading to increased heat

transfer between the fluid and solid. This also helps the

fluid in attaining thermal equilibrium faster and thus

enforces the local equilibrium assumption.

As a result, two correlation equations are obtained

based on the mapping results discussed above. These

equations are valid for the specified ranges with a rea-

sonable error:

(1) To estimate the length along the plate xplateau beyond
which the local thermal equilibrium assumption is

valid everywhere in the flow domain:

xplateau ¼
16Ra1:000m

k0:157Bi1:07v Da0:022
ð7Þ

with maximum error of 16% for Da6 0:1, Biv P 1,

Ram P 10, and kP 1:0. The above correlation im-

plies that the local thermal equilibrium assumption

is valid within regions having x > xplateau and yP 0.

(2) On the other hand, the region within which using the

two-phase (Schumann) model is essential, is given as:

x < xPlateau

y ¼ Da0:017Bi0:535v k0:321X 0:844

2:72405Ra0:832m

ð8Þ

where xplateau is given in Eq. (7). Correlation (8) has a

maximum error of 30% for Da6 0:1, Biv P 1,

Ram P 10, kP 1, and x > xplateau=2.
5. Conclusions

In this study, the validity of the local thermal equi-

librium assumption is checked for the case of natural

convection heat transfer from a vertical flat plate

embedded in porous medium. The study is based on the

Brinkman-extended Darcy model and it was assumed

that the solid and fluid phases are not in local thermal

equilibrium due to heat transfer between them.

It is found that there are four dimensionless para-

meters that govern the validity of the local equilibrium

assumption. These parameters are Biv, Da, Ram, and k.
The conclusions from this study can be summarized

by the fact that local thermal equilibrium could be as-

sumed with sufficient accuracy, and that this assumption

is valid for high value of Da, Biv, and k, and lower values

of Ram. This implies that the assumption is not justified

for relatively low values of Da, Biv, and k, and high



2042 O.M. Haddad et al. / International Journal of Heat and Mass Transfer 47 (2004) 2037–2042
values of Ram. In such conditions, the two-phase

(Schumann) model is recommended.

The quantitative description of these conclusions is

presented in correlation equations, for more convenience.
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